|
|
study description | list of variables | data access
Details for variable v156
Name: v156 Variable label:
iné a bez vyz. (do 1950) 1910 %
Label | Value | | Frequency* | %* | |
0
| |
7
| 0.24 | |
0.1
| |
14
| 0.48 | |
0.2
| |
11
| 0.38 | |
0.3
| |
9
| 0.31 | |
0.4
| |
2
| 0.07 | |
0.5
| |
4
| 0.14 | |
0.6
| |
6
| 0.2 | |
0.7
| |
5
| 0.17 | |
0.8
| |
7
| 0.24 | |
0.9
| |
5
| 0.17 | |
1
| |
15
| 0.51 | |
1.1
| |
5
| 0.17 | |
1.2
| |
1
| 0.03 | |
1.3
| |
3
| 0.1 | |
1.4
| |
3
| 0.1 | |
1.5
| |
3
| 0.1 | |
1.6
| |
5
| 0.17 | |
1.7
| |
3
| 0.1 | |
1.8
| |
3
| 0.1 | |
1.9
| |
3
| 0.1 | |
2
| |
8
| 0.27 | |
2.1
| |
6
| 0.2 | |
2.2
| |
7
| 0.24 | |
2.3
| |
7
| 0.24 | |
2.4
| |
1
| 0.03 | |
2.5
| |
6
| 0.2 | |
2.7
| |
4
| 0.14 | |
2.8
| |
3
| 0.1 | |
2.9
| |
5
| 0.17 | |
3
| |
8
| 0.27 | |
3.1
| |
6
| 0.2 | |
3.2
| |
2
| 0.07 | |
3.4
| |
3
| 0.1 | |
3.5
| |
4
| 0.14 | |
3.6
| |
4
| 0.14 | |
3.7
| |
3
| 0.1 | |
3.8
| |
1
| 0.03 | |
3.9
| |
2
| 0.07 | |
4
| |
5
| 0.17 | |
4.1
| |
2
| 0.07 | |
4.2
| |
2
| 0.07 | |
4.3
| |
1
| 0.03 | |
4.4
| |
2
| 0.07 | |
4.6
| |
2
| 0.07 | |
4.7
| |
4
| 0.14 | |
4.9
| |
1
| 0.03 | |
5
| |
4
| 0.14 | |
5.1
| |
5
| 0.17 | |
5.2
| |
2
| 0.07 | |
5.3
| |
1
| 0.03 | |
5.4
| |
1
| 0.03 | |
5.7
| |
1
| 0.03 | |
5.8
| |
3
| 0.1 | |
6
| |
7
| 0.24 | |
6.1
| |
1
| 0.03 | |
6.3
| |
3
| 0.1 | |
6.5
| |
2
| 0.07 | |
6.9
| |
2
| 0.07 | |
7
| |
3
| 0.1 | |
7.1
| |
1
| 0.03 | |
7.2
| |
3
| 0.1 | |
7.7
| |
2
| 0.07 | |
8
| |
2
| 0.07 | |
8.1
| |
1
| 0.03 | |
8.2
| |
2
| 0.07 | |
8.3
| |
1
| 0.03 | |
8.4
| |
2
| 0.07 | |
8.9
| |
1
| 0.03 | |
9
| |
5
| 0.17 | |
9.1
| |
1
| 0.03 | |
9.2
| |
1
| 0.03 | |
9.3
| |
1
| 0.03 | |
9.6
| |
1
| 0.03 | |
9.9
| |
2
| 0.07 | |
10
| |
4
| 0.14 | |
10.4
| |
1
| 0.03 | |
10.5
| |
1
| 0.03 | |
10.6
| |
1
| 0.03 | |
11
| |
3
| 0.1 | |
11.2
| |
1
| 0.03 | |
11.5
| |
3
| 0.1 | |
11.6
| |
2
| 0.07 | |
11.9
| |
1
| 0.03 | |
12
| |
3
| 0.1 | |
12.1
| |
1
| 0.03 | |
12.5
| |
1
| 0.03 | |
12.6
| |
1
| 0.03 | |
12.8
| |
1
| 0.03 | |
12.9
| |
1
| 0.03 | |
13
| |
2
| 0.07 | |
13.2
| |
1
| 0.03 | |
13.4
| |
2
| 0.07 | |
13.6
| |
1
| 0.03 | |
13.9
| |
1
| 0.03 | |
14
| |
1
| 0.03 | |
14.8
| |
1
| 0.03 | |
15
| |
2
| 0.07 | |
15.4
| |
1
| 0.03 | |
15.5
| |
3
| 0.1 | |
15.7
| |
2
| 0.07 | |
16
| |
1
| 0.03 | |
16.2
| |
2
| 0.07 | |
17
| |
1
| 0.03 | |
17.1
| |
1
| 0.03 | |
17.9
| |
1
| 0.03 | |
18
| |
4
| 0.14 | |
18.4
| |
1
| 0.03 | |
19
| |
4
| 0.14 | |
19.5
| |
1
| 0.03 | |
20
| |
2
| 0.07 | |
20.2
| |
1
| 0.03 | |
20.4
| |
1
| 0.03 | |
20.7
| |
1
| 0.03 | |
21
| |
4
| 0.14 | |
21.1
| |
1
| 0.03 | |
21.2
| |
1
| 0.03 | |
21.4
| |
1
| 0.03 | |
21.7
| |
1
| 0.03 | |
22
| |
5
| 0.17 | |
23
| |
2
| 0.07 | |
23.2
| |
1
| 0.03 | |
24
| |
1
| 0.03 | |
24.9
| |
1
| 0.03 | |
25
| |
2
| 0.07 | |
25.5
| |
2
| 0.07 | |
26
| |
3
| 0.1 | |
26.7
| |
1
| 0.03 | |
27
| |
2
| 0.07 | |
27.1
| |
1
| 0.03 | |
28
| |
4
| 0.14 | |
29
| |
1
| 0.03 | |
31
| |
3
| 0.1 | |
33
| |
1
| 0.03 | |
36
| |
2
| 0.07 | |
37
| |
1
| 0.03 | |
39
| |
1
| 0.03 | |
41
| |
2
| 0.07 | |
42
| |
1
| 0.03 | |
43.2
| |
1
| 0.03 | |
43.9
| |
1
| 0.03 | |
44
| |
3
| 0.1 | |
45
| |
2
| 0.07 | |
46
| |
1
| 0.03 | |
47
| |
2
| 0.07 | |
48
| |
2
| 0.07 | |
49
| |
2
| 0.07 | |
50
| |
1
| 0.03 | |
51
| |
2
| 0.07 | |
52
| |
1
| 0.03 | |
53
| |
2
| 0.07 | |
54
| |
1
| 0.03 | |
55
| |
1
| 0.03 | |
56
| |
2
| 0.07 | |
57
| |
1
| 0.03 | |
58
| |
2
| 0.07 | |
59
| |
1
| 0.03 | |
60
| |
2
| 0.07 | |
61
| |
2
| 0.07 | |
64
| |
1
| 0.03 | |
66
| |
1
| 0.03 | |
68
| |
1
| 0.03 | |
70
| |
1
| 0.03 | |
75
| |
2
| 0.07 | |
77
| |
2
| 0.07 | |
81
| |
2
| 0.07 | |
82
| |
1
| 0.03 | |
83
| |
2
| 0.07 | |
87
| |
1
| 0.03 | |
90
| |
1
| 0.03 | |
92
| |
2
| 0.07 | |
93
| |
1
| 0.03 | |
94
| |
2
| 0.07 | |
95
| |
2
| 0.07 | |
98
| |
1
| 0.03 | |
102
| |
1
| 0.03 | |
103
| |
2
| 0.07 | |
105
| |
1
| 0.03 | |
110
| |
2
| 0.07 | |
111
| |
3
| 0.1 | |
120
| |
2
| 0.07 | |
122
| |
1
| 0.03 | |
131
| |
1
| 0.03 | |
135
| |
1
| 0.03 | |
138
| |
1
| 0.03 | |
139
| |
2
| 0.07 | |
144
| |
1
| 0.03 | |
146
| |
1
| 0.03 | |
147
| |
1
| 0.03 | |
152
| |
1
| 0.03 | |
157
| |
1
| 0.03 | |
160
| |
1
| 0.03 | |
161
| |
1
| 0.03 | |
176
| |
1
| 0.03 | |
179
| |
1
| 0.03 | |
182
| |
1
| 0.03 | |
185
| |
1
| 0.03 | |
190
| |
1
| 0.03 | |
201
| |
1
| 0.03 | |
205
| |
1
| 0.03 | |
208
| |
1
| 0.03 | |
214
| |
1
| 0.03 | |
220
| |
1
| 0.03 | |
236
| |
1
| 0.03 | |
238
| |
1
| 0.03 | |
241
| |
2
| 0.07 | |
243
| |
1
| 0.03 | |
245
| |
1
| 0.03 | |
253
| |
1
| 0.03 | |
265
| |
1
| 0.03 | |
271
| |
2
| 0.07 | |
272
| |
2
| 0.07 | |
273
| |
1
| 0.03 | |
275
| |
1
| 0.03 | |
281
| |
1
| 0.03 | |
297
| |
1
| 0.03 | |
299
| |
1
| 0.03 | |
310
| |
1
| 0.03 | |
317
| |
1
| 0.03 | |
334
| |
1
| 0.03 | |
340
| |
1
| 0.03 | |
343
| |
1
| 0.03 | |
344
| |
1
| 0.03 | |
353
| |
1
| 0.03 | |
358
| |
1
| 0.03 | |
366
| |
1
| 0.03 | |
376
| |
1
| 0.03 | |
378
| |
1
| 0.03 | |
379
| |
1
| 0.03 | |
401
| |
1
| 0.03 | |
402
| |
2
| 0.07 | |
410
| |
1
| 0.03 | |
448
| |
1
| 0.03 | |
454
| |
1
| 0.03 | |
467
| |
2
| 0.07 | |
471
| |
1
| 0.03 | |
473
| |
1
| 0.03 | |
475
| |
1
| 0.03 | |
551
| |
1
| 0.03 | |
568
| |
1
| 0.03 | |
585
| |
1
| 0.03 | |
587
| |
1
| 0.03 | |
607
| |
1
| 0.03 | |
630
| |
1
| 0.03 | |
631
| |
1
| 0.03 | |
640
| |
1
| 0.03 | |
644
| |
1
| 0.03 | |
648
| |
1
| 0.03 | |
691
| |
1
| 0.03 | |
731
| |
1
| 0.03 | |
759
| |
1
| 0.03 | |
798
| |
1
| 0.03 | |
813
| |
2
| 0.07 | |
818
| |
1
| 0.03 | |
870
| |
1
| 0.03 | |
878
| |
1
| 0.03 | |
957
| |
1
| 0.03 | |
962
| |
1
| 0.03 | |
1082
| |
1
| 0.03 | |
1095
| |
1
| 0.03 | |
1209
| |
1
| 0.03 | |
1219
| |
1
| 0.03 | |
1244
| |
1
| 0.03 | |
1493
| |
1
| 0.03 | |
1661
| |
1
| 0.03 | |
2042
| |
1
| 0.03 | |
2694
| |
1
| 0.03 | |
2954
| |
1
| 0.03 | |
3098
| |
1
| 0.03 | |
3284
| |
1
| 0.03 | |
3706
| |
1
| 0.03 | |
4181
| |
1
| 0.03 | |
5502
| |
1
| 0.03 | |
9003
| |
1
| 0.03 | |
Sysmiss
| |
2381
| 81.29 |
Summary statistics
Total Responses: Valid:
548
Min. / max. value:
2381
/ Mean / standard deviation: /
*Caution: Frequencies and percentages are calculated from unweighted data. If data were not collected using quota sampling, there could be significant differences between those unweighted values and the representative weighted figures.
|