|
|
study description | list of variables | data access
Details for variable Rusni1970
Name: Rusni1970 Variable label:
Rusíni 1970 %
Label | Value | | Frequency* | %* | |
0
| |
390
| 14.97 | |
0,0
| |
41
| 1.57 | |
0,1
| |
87
| 3.34 | |
0,2
| |
94
| 3.61 | |
0,3
| |
68
| 2.61 | |
0,4
| |
59
| 2.26 | |
0,5
| |
55
| 2.11 | |
0,6
| |
40
| 1.54 | |
0,7
| |
44
| 1.69 | |
0,8
| |
29
| 1.11 | |
0,9
| |
28
| 1.07 | |
1
| |
210
| 8.06 | |
1,0
| |
26
| 1 | |
1,1
| |
19
| 0.73 | |
1,2
| |
18
| 0.69 | |
1,3
| |
23
| 0.88 | |
1,4
| |
16
| 0.61 | |
1,5
| |
19
| 0.73 | |
1,6
| |
10
| 0.38 | |
1,7
| |
15
| 0.58 | |
1,8
| |
12
| 0.46 | |
1,9
| |
7
| 0.27 | |
10
| |
32
| 1.23 | |
10,1
| |
1
| 0.04 | |
10,4
| |
1
| 0.04 | |
10,5
| |
1
| 0.04 | |
10,6
| |
1
| 0.04 | |
10,7
| |
1
| 0.04 | |
10,8
| |
1
| 0.04 | |
10,9
| |
2
| 0.08 | |
101
| |
1
| 0.04 | |
103
| |
1
| 0.04 | |
106
| |
1
| 0.04 | |
107
| |
1
| 0.04 | |
108
| |
1
| 0.04 | |
109
| |
4
| 0.15 | |
11
| |
20
| 0.77 | |
11,1
| |
4
| 0.15 | |
11,2
| |
1
| 0.04 | |
11,3
| |
1
| 0.04 | |
11,5
| |
1
| 0.04 | |
11,6
| |
1
| 0.04 | |
11,7
| |
1
| 0.04 | |
110
| |
1
| 0.04 | |
111
| |
1
| 0.04 | |
114
| |
1
| 0.04 | |
1159
| |
1
| 0.04 | |
116
| |
1
| 0.04 | |
118
| |
2
| 0.08 | |
12
| |
19
| 0.73 | |
12,5
| |
2
| 0.08 | |
12,8
| |
1
| 0.04 | |
120
| |
1
| 0.04 | |
123
| |
1
| 0.04 | |
127
| |
1
| 0.04 | |
128
| |
1
| 0.04 | |
13
| |
13
| 0.5 | |
13,0
| |
1
| 0.04 | |
13,4
| |
2
| 0.08 | |
133
| |
1
| 0.04 | |
135
| |
1
| 0.04 | |
14
| |
11
| 0.42 | |
14,1
| |
2
| 0.08 | |
14,4
| |
1
| 0.04 | |
14,6
| |
1
| 0.04 | |
14,8
| |
1
| 0.04 | |
143
| |
1
| 0.04 | |
145
| |
1
| 0.04 | |
147
| |
1
| 0.04 | |
148
| |
1
| 0.04 | |
15
| |
11
| 0.42 | |
15,4
| |
1
| 0.04 | |
15,7
| |
1
| 0.04 | |
159
| |
1
| 0.04 | |
16
| |
18
| 0.69 | |
16,0
| |
1
| 0.04 | |
162
| |
1
| 0.04 | |
164
| |
1
| 0.04 | |
1687
| |
1
| 0.04 | |
169
| |
1
| 0.04 | |
17
| |
8
| 0.31 | |
17,0
| |
2
| 0.08 | |
17,3
| |
1
| 0.04 | |
17,4
| |
1
| 0.04 | |
175
| |
1
| 0.04 | |
177
| |
1
| 0.04 | |
178
| |
1
| 0.04 | |
18
| |
18
| 0.69 | |
18,2
| |
1
| 0.04 | |
18,5
| |
1
| 0.04 | |
18,6
| |
1
| 0.04 | |
19
| |
18
| 0.69 | |
19,4
| |
1
| 0.04 | |
19,5
| |
1
| 0.04 | |
2
| |
112
| 4.3 | |
2,0
| |
15
| 0.58 | |
2,1
| |
9
| 0.35 | |
2,2
| |
10
| 0.38 | |
2,3
| |
8
| 0.31 | |
2,4
| |
9
| 0.35 | |
2,5
| |
9
| 0.35 | |
2,6
| |
9
| 0.35 | |
2,7
| |
6
| 0.23 | |
2,8
| |
6
| 0.23 | |
2,9
| |
12
| 0.46 | |
20
| |
14
| 0.54 | |
20,0
| |
1
| 0.04 | |
20,1
| |
1
| 0.04 | |
20,8
| |
1
| 0.04 | |
21
| |
7
| 0.27 | |
21,8
| |
1
| 0.04 | |
22
| |
9
| 0.35 | |
22,1
| |
1
| 0.04 | |
22,9
| |
1
| 0.04 | |
220
| |
1
| 0.04 | |
23
| |
9
| 0.35 | |
24
| |
4
| 0.15 | |
24,3
| |
1
| 0.04 | |
24,4
| |
1
| 0.04 | |
247
| |
1
| 0.04 | |
25
| |
8
| 0.31 | |
25,9
| |
1
| 0.04 | |
257
| |
1
| 0.04 | |
26
| |
6
| 0.23 | |
26,4
| |
1
| 0.04 | |
27
| |
7
| 0.27 | |
27,1
| |
1
| 0.04 | |
27,8
| |
1
| 0.04 | |
28
| |
6
| 0.23 | |
28,0
| |
1
| 0.04 | |
28,1
| |
1
| 0.04 | |
29
| |
8
| 0.31 | |
29,4
| |
2
| 0.08 | |
3
| |
79
| 3.03 | |
3,0
| |
13
| 0.5 | |
3,1
| |
9
| 0.35 | |
3,2
| |
7
| 0.27 | |
3,3
| |
3
| 0.12 | |
3,4
| |
8
| 0.31 | |
3,5
| |
8
| 0.31 | |
3,6
| |
12
| 0.46 | |
3,7
| |
5
| 0.19 | |
3,8
| |
11
| 0.42 | |
3,9
| |
16
| 0.61 | |
3.116073747078681
| |
1
| 0.04 | |
30
| |
5
| 0.19 | |
30.89005235602094
| |
1
| 0.04 | |
31
| |
3
| 0.12 | |
31,8
| |
1
| 0.04 | |
32
| |
3
| 0.12 | |
32,8
| |
1
| 0.04 | |
32.6797385620915
| |
1
| 0.04 | |
33
| |
8
| 0.31 | |
34
| |
1
| 0.04 | |
34,1
| |
1
| 0.04 | |
35
| |
6
| 0.23 | |
36
| |
3
| 0.12 | |
37
| |
5
| 0.19 | |
37,3
| |
1
| 0.04 | |
37,9
| |
1
| 0.04 | |
38
| |
8
| 0.31 | |
39
| |
7
| 0.27 | |
4
| |
66
| 2.53 | |
4,0
| |
11
| 0.42 | |
4,1
| |
7
| 0.27 | |
4,2
| |
6
| 0.23 | |
4,3
| |
7
| 0.27 | |
4,4
| |
3
| 0.12 | |
4,5
| |
7
| 0.27 | |
4,6
| |
8
| 0.31 | |
4,7
| |
7
| 0.27 | |
4,8
| |
6
| 0.23 | |
40
| |
3
| 0.12 | |
41
| |
4
| 0.15 | |
42
| |
6
| 0.23 | |
43
| |
5
| 0.19 | |
433
| |
1
| 0.04 | |
44
| |
3
| 0.12 | |
45
| |
2
| 0.08 | |
453
| |
1
| 0.04 | |
46
| |
3
| 0.12 | |
46,5
| |
1
| 0.04 | |
47
| |
6
| 0.23 | |
47,3
| |
1
| 0.04 | |
48
| |
1
| 0.04 | |
49
| |
1
| 0.04 | |
49,5
| |
1
| 0.04 | |
5
| |
54
| 2.07 | |
5,0
| |
2
| 0.08 | |
5,1
| |
2
| 0.08 | |
5,2
| |
1
| 0.04 | |
5,3
| |
5
| 0.19 | |
5,4
| |
5
| 0.19 | |
5,5
| |
4
| 0.15 | |
5,6
| |
2
| 0.08 | |
5,7
| |
3
| 0.12 | |
5,8
| |
1
| 0.04 | |
5,9
| |
1
| 0.04 | |
50
| |
1
| 0.04 | |
51
| |
3
| 0.12 | |
51.85185185185185
| |
1
| 0.04 | |
52
| |
3
| 0.12 | |
53
| |
1
| 0.04 | |
54
| |
3
| 0.12 | |
55
| |
2
| 0.08 | |
56
| |
2
| 0.08 | |
57
| |
6
| 0.23 | |
58
| |
4
| 0.15 | |
59
| |
3
| 0.12 | |
6
| |
46
| 1.77 | |
6,0
| |
3
| 0.12 | |
6,1
| |
2
| 0.08 | |
6,2
| |
3
| 0.12 | |
6,3
| |
2
| 0.08 | |
6,4
| |
1
| 0.04 | |
6,5
| |
4
| 0.15 | |
6,7
| |
2
| 0.08 | |
6,8
| |
3
| 0.12 | |
6,9
| |
2
| 0.08 | |
60
| |
3
| 0.12 | |
617
| |
1
| 0.04 | |
62
| |
4
| 0.15 | |
63
| |
1
| 0.04 | |
64
| |
4
| 0.15 | |
649
| |
1
| 0.04 | |
65
| |
1
| 0.04 | |
650
| |
1
| 0.04 | |
66
| |
3
| 0.12 | |
67.78242677824268
| |
1
| 0.04 | |
68
| |
1
| 0.04 | |
686
| |
1
| 0.04 | |
6 663
| |
1
| 0.04 | |
7
| |
27
| 1.04 | |
7,0
| |
1
| 0.04 | |
7,1
| |
2
| 0.08 | |
7,2
| |
4
| 0.15 | |
7,3
| |
2
| 0.08 | |
7,4
| |
2
| 0.08 | |
7,5
| |
2
| 0.08 | |
7,6
| |
3
| 0.12 | |
7,7
| |
4
| 0.15 | |
7,8
| |
1
| 0.04 | |
7,9
| |
3
| 0.12 | |
72
| |
1
| 0.04 | |
73
| |
1
| 0.04 | |
74
| |
2
| 0.08 | |
76
| |
2
| 0.08 | |
78
| |
2
| 0.08 | |
79
| |
1
| 0.04 | |
8
| |
31
| 1.19 | |
8,0
| |
2
| 0.08 | |
8,2
| |
1
| 0.04 | |
8,3
| |
1
| 0.04 | |
8,8
| |
4
| 0.15 | |
8,9
| |
1
| 0.04 | |
81
| |
3
| 0.12 | |
85
| |
1
| 0.04 | |
86
| |
1
| 0.04 | |
88
| |
3
| 0.12 | |
9
| |
36
| 1.38 | |
9,1
| |
2
| 0.08 | |
9,2
| |
1
| 0.04 | |
9,5
| |
1
| 0.04 | |
9,6
| |
2
| 0.08 | |
9,8
| |
2
| 0.08 | |
9,9
| |
1
| 0.04 | |
91
| |
1
| 0.04 | |
97
| |
1
| 0.04 | |
98
| |
1
| 0.04 |
Summary statistics
Total Responses: Valid:
2605
Min. / max. value:
0
/ Mean / standard deviation: /
*Caution: Frequencies and percentages are calculated from unweighted data. If data were not collected using quota sampling, there could be significant differences between those unweighted values and the representative weighted figures.
|